
Public

SMART CONTRACT AUDIT REPORT

for

CRYPTOZOON

Prepared By: Yiqun Chen

PeckShield
August 25, 2021

1/18 PeckShield Audit Report #: 2021-253

contact@peckshield.com

Public

Document Properties

Client CryptoZoon
Title Smart Contract Audit Report
Target CryptoZoon
Version 1.0
Author Xuxian Jiang
Auditors Xiaotao Wu, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 August 25, 2021 Xuxian Jiang Final Release
1.0-rc August 24, 2021 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2021-253

Public

Contents

1 Introduction 4
1.1 About CryptoZoon . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Accommodation of Non-ERC20-Compliant Tokens 11
3.2 Redundant State/Code Removal . 13
3.3 Improved Validation Of Function Arguments . 14

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2021-253

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the CryptoZoon smart
contracts, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About CryptoZoon

The CryptoZoon protocol is inspired by Pokemon Story with the main mission to build a comprehensive
platform of digital monsters. The goal is to enable millions of individuals to participate in the NFT and
blockchain-based gaming world in a simple, creative, and enjoyable way. In particular, it combines the
greatest aspects of gaming and digital collectibles, transforming it into the digital creatures universe.
With CryptoZoon, players can use their ZOAN tokens to fight monsters, collect, grow, and join training
(battle each other). The basic information of audited contracts is as follows:

Table 1.1: Basic Information of CryptoZoon

Item Description
Name CryptoZoon
Type Binance Smart Chain Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report August 25, 2021

In the following, we show the link to the smart contract source code for audit. Note that
CryptoZoon assumes a trusted (external) router that provides the required evolvers, battlefields, as
well as various protocol-wide arguments (e.g., priceEgg and feeEvolve) and the router itself is not
part of this audit.

4/18 PeckShield Audit Report #: 2021-253

Public

• https://bscscan.com/address/0x51d7e502204043432884977976263aca4ef23f09

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/18 PeckShield Audit Report #: 2021-253

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/18 PeckShield Audit Report #: 2021-253

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2021-253

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2021-253

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the CryptoZoon

smart contracts. During the first phase of our audit, we study the smart contract source code and
run our in-house static code analyzer through the codebase. The purpose here is to statically identify
known coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We
further manually review business logics, examine system operations, and place DeFi-related aspects
under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 2

Informational 1

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/18 PeckShield Audit Report #: 2021-253

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 low-severity vulnerabilities
and 1 informational recommendation.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Low Accommodation of Non-ERC20-

Compliant Tokens
Business Logic Fixed

PVE-002 Informational Redundant Data/Code Removal Coding Practices Fixed
PVE-003 Low Improved Validation Of Function Ar-

guments
Security Features Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/18 PeckShield Audit Report #: 2021-253

Public

3 | Detailed Results

3.1 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: High

• Target: CryptoZoan

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In the following, we
examine the transfer() routine and related idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value

&& balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the
following: “Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

64 f unc t i on t r a n s f e r (address _to , u in t _value) r e tu rn s (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).
66 i f (b a l a n c e s [msg . sender] >= _value && ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
67 ba l a n c e s [msg . sender] −= _value ;
68 ba l a n c e s [_to] += _value ;
69 Transfer (msg . sender , _to , _value) ;
70 re tu rn t rue ;
71 } e l s e { re tu rn f a l s e ; }
72 }

74 f unc t i on t r a n s f e rF r om (address _from , address _to , u in t _value) r e tu rn s (bool) {

11/18 PeckShield Audit Report #: 2021-253

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

75 i f (b a l a n c e s [_from] >= _value && a l l owed [_from] [msg . sender] >= _value &&
ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {

76 ba l a n c e s [_to] += _value ;
77 ba l a n c e s [_from] −= _value ;
78 a l l owed [_from] [msg . sender] −= _value ;
79 Transfer (_from , _to , _value) ;
80 re tu rn t rue ;
81 } e l s e { re tu rn f a l s e ; }
82 }

Listing 3.1: ZRX.sol

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In the following, we show the recoverZoon() routine in the CryptoZoan contract. If the USDT

token is supported as zoonToken, the unsafe version of zoonToken.transfer(msg.sender, amount) (line
313) may revert as there is no return value in the USDT token contract’s transfer()/transferFrom()

implementation (but the IERC20 interface expects a return value)!

311 function recoverZoon(uint256 amount) public {
312 require(msg.sender == dev);
313 zoonToken.transfer(msg.sender , amount); // dont expect we’ll hold tokens here

but might as well
314 }

Listing 3.2: CryptoZoan::recoverZoon()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status This issue has been resolved as the new version removes this recoverZoon() function.

12/18 PeckShield Audit Report #: 2021-253

Public

3.2 Redundant State/Code Removal

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: CryptoZoan

• Category: Coding Practices [5]

• CWE subcategory: CWE-563 [2]

Description

The CryptoZoon protocol makes good use of a number of reference contracts, such as ERC721Upgradeable
, ERC20, SafeMath, and SafeERC20, to facilitate its code implementation and organization. For example,
the CryptoZoan smart contract has so far imported at least five reference contracts. However, we
observe the inclusion of certain unused code or the presence of unnecessary redundancies that can
be safely removed.

For example, if we examine closely the data structures defined in CryptoZoan, the ItemSale structure
is not used throughput the contract. With that, it is suggested to simply remove it.

43 struct Zoan {
44 uint256 collections;
45 uint256 generation;
46 Tribe tribe;
47 uint256 exp;
48 uint256 dna;
49 uint256 bornTime;
50 }
51
52 struct ItemSale {
53 uint256 tokenId;
54 address owner;
55 uint256 price;
56 }

Listing 3.3: CryptoZoan::ItemSale

In addition, a public function layEgg() routine can be improved as it contains redundant code.
In particular, the if-condition (line 209) as well as the then-branch (line 209) can be removed. The
reason is that the else-branch logic (lines 211 − 213) can accommodate the entire the then-branch.

202 function layEgg(
203 address receiver ,
204 Tribe[] memory tribes ,
205 uint256 _collections
206) external onlyEvolver {
207 uint256 amount = tribes.length;
208 require(amount > 0, "require: >0");
209 if (amount == 1) _layEgg(receiver , tribes [0], _collections);

13/18 PeckShield Audit Report #: 2021-253

Public

210 else
211 for (uint256 index = 0; index < amount; index ++) {
212 _layEgg(receiver , tribes[index], _collections);
213 }
214 }

Listing 3.4: CryptoZoan::layEgg()

Recommendation Consider the removal of the redundant state (or code) with a simplified,
consistent implementation.

Status The issue has been fixed by taking the above suggestions and removing unused/redun-
dant statements.

3.3 Improved Validation Of Function Arguments

• ID: PVE-004

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: CryptoZoan

• Category: Security Features [4]

• CWE subcategory: CWE-287 [1]

Description

The CryptoZoon protocol creates NFT tokens and each is unique with its own tokenId. Moreover, the
tokenId is widely used as the key to index a number of other states, e.g., zoans, isEvolved, and
latestBlockTransfer. With that, there is a constant need in validating whether the given tokenId is
a valid one or not.

In the following, we show two example routines exp() and evolve(). These two routines are used
by authorized callers to update internal states on zoan. It comes to our attention that both routines
do not properly validate the input arguments of _tokenId.

155 function exp(uint256 _tokenId , uint256 _exp) public onlyBattlefield {
156 require(_exp > 0, "no exp");
157
158 Zoan storage zoan = zoans[_tokenId];
159 zoan.exp = zoan.exp.add(_exp);
160 emit Exp(_tokenId , _exp);
161 }
162
163 function evolve(
164 uint256 _tokenId ,
165 uint256 _dna ,
166 uint256 _generation
167) public onlyEvolver {

14/18 PeckShield Audit Report #: 2021-253

Public

168 require(
169 latestBlockTransfer[_tokenId] < block.number ,
170 "evolve after transfer"
171);
172
173 Zoan storage zoan = zoans[_tokenId];
174 require (! isEvolved[_tokenId], "require: not evolved");
175
176 zoan.bornTime = block.timestamp;
177 zoan.dna = _dna;
178 zoan.generation = _generation;
179
180 isEvolved[_tokenId] = true;
181
182 emit Evolve(_tokenId , _dna);
183 }

Listing 3.5: CryptoZoan::exp()/evolve()

In other words, though there is a constant need to perform sanity checks on the given tokenId

, the current implementation simply relies on the trust on the authenticated caller to ensure the
tokenId index stays within the array range [0, latestTokenId]. However, considering the importance
of validating the given tokenId and its numerous occasions, a better alternative is to make explicit
the sanity checks by introducing a new modifier, say validTokenId(). This new modifier essentially
ensures the given tokenId indeed points to a valid NFT token, and additionally give semantically
meaningful information when it is not!

We highlight that there are a number of functions that can benefit from the new tokenId-validating
modifier, including exp(), evolve(), changeTribe() and upgradeGeneration().

Recommendation Apply necessary sanity checks to ensure the given tokenId is legitimate.
Accordingly, a new modifier validTokenId() can be developed and appended to each function in the
above list.

155 modifier validTokenId(uint256 _tokenId) {
156 require(tokenId > 0 && _tokenId <= latestTokenId , "Invalid tokenId?");
157 _;
158 }
159
160 function exp(uint256 _tokenId , uint256 _exp) public validTokenId(_tokenId)

onlyBattlefield {
161 require(_exp > 0, "no exp");
162
163 Zoan storage zoan = zoans[_tokenId];
164 zoan.exp = zoan.exp.add(_exp);
165 emit Exp(_tokenId , _exp);
166 }
167
168 function evolve(
169 uint256 _tokenId ,

15/18 PeckShield Audit Report #: 2021-253

Public

170 uint256 _dna ,
171 uint256 _generation
172) public validTokenId(_tokenId) onlyEvolver {
173 require(
174 latestBlockTransfer[_tokenId] < block.number ,
175 "evolve after transfer"
176);
177
178 Zoan storage zoan = zoans[_tokenId];
179 require (! isEvolved[_tokenId], "require: not evolved");
180
181 zoan.bornTime = block.timestamp;
182 zoan.dna = _dna;
183 zoan.generation = _generation;
184
185 isEvolved[_tokenId] = true;
186
187 emit Evolve(_tokenId , _dna);
188 }

Listing 3.6: Revised CryptoZoan::exp()/evolve()

Status This issue has been fixed by adding the new validTokenId() modifier to the above list
of related functions.

16/18 PeckShield Audit Report #: 2021-253

Public

4 | Conclusion

In this audit, we have analyzed the CryptoZoon design and implementation. The CryptoZoon protocol
allows for flexible creation and customization of ERC721-based NFT tokens. The current code base is
well structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

17/18 PeckShield Audit Report #: 2021-253

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2021-253

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About CryptoZoon
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Accommodation of Non-ERC20-Compliant Tokens
	Redundant State/Code Removal
	Improved Validation Of Function Arguments

	Conclusion
	References

